Estamos realizando la búsqueda. Por favor, espere...
1443
37
174
31252
4606
2680
362
410
Abstract: We introduce topological prismatoids, a combinatorial abstraction of the (geometric) prismatoids recently introduced by the second author to construct counter-examples to the Hirsch conjecture. We show that the "strong d-step Theorem" that allows to construct such large-diameter polytopes from "non-d-step" prismatoids still works at this combinatorial level. Then, using metaheuristic methods on the flip graph, we construct four combinatorially different non-d-step 4-dimensional topological prismatoids with 14 vertices. This implies the existence of 8-dimensional spheres with 18 vertices whose combinatorial diameter exceeds the Hirsch bound. These examples are smaller that the previously known examples by Mani and Walkup in 1980 (24 vertices, dimension 11). Our non-Hirsch spheres are shellable but we do not know whether they are realizable as polytopes.
Autoría: Criado F., Santos F.,
Fuente: Experimental Mathematics, 2022, 31(2), 461-473
Editorial: Taylor & Francis
Año de publicación: 2022
Nº de páginas: 14
Tipo de publicación: Artículo de Revista
DOI: 10.1080/10586458.2019.1641766
ISSN: 1058-6458,1944-950X
Proyecto español: MTM2017-83750-P
Url de la publicación: https://doi.org/10.1080/10586458.2019.1641766
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
CRIADO, FRANCISCO
FRANCISCO SANTOS LEAL
Volver