Estamos realizando la búsqueda. Por favor, espere...

Identifying codes of degree 4 Cayley graphs over Abelian groups

Abstract: In this paper a wide family of identifying codes over regular Cayley graphs of degree four which are built over finite Abelian groups is presented. Some of the codes in this construction are also perfect. The graphs considered include some well-known graphs such as tori, twisted tori and Kronecker products of two cycles. Therefore, the codes can be used for identification in these graphs. Finally, an example of how these codes can be applied for adaptive identification over these graphs is presented. © 2015 AIMS.

 Fuente: Advances in Mathematics of Communications, 2015, 9(2), 129-148

 Editorial: American Institute of Mathematical Sciences

 Fecha de publicación: 01/05/2015

 Nº de páginas: 20

 Tipo de publicación: Artículo de Revista

 DOI: 10.3934/amc.2015.9.129

 ISSN: 1930-5346,1930-5338

 Proyecto español: TIN2013-6957-C2-2-P

 Url de la publicación: https://doi.org/10.3934/amc.2015.9.129