Estamos realizando la búsqueda. Por favor, espere...
1437
37
174
30996
4545
2676
361
406
Abstract: In this novel research a hybrid algorithm is presented, one capable of selecting a set of features that makes it possible to identify individuals who are healthy and those who suffer from prostate cancer. In this research the selection of features is carried out by means of evolutionary algorithms. In previous works, algorithms of this nature have proven their ability to find solutions for optimization problems in a wide range of fields. The present research proposes a novel hybrid algorithm based on genetic algorithms and support vector machines have been developed in order to find the best variables subset for classifying individuals. The results obtained show how well the method performs in comparison to other methodologies. Cases and controls belong to the study MCC-Spain.
Fuente: Neurocomputing , 2021, 452(10 ), 386-394
Editorial: Elsevier
Fecha de publicación: 01/09/2021
Nº de páginas: 9
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.neucom.2019.08.113
ISSN: 0925-2312,1872-8286
Url de la publicación: https://doi.org/10.1016/j.neucom.2019.08.113
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
SÁNCHEZ LASHERAS, JUAN ENRIQUE
SÁNCHEZ LASHERAS, FERNANDO
GONZÁLEZ DONQUILES, CARMEN
ADONINA TARDON GARCIA
CASTAÑO VINYALS, GEMMA
CAMILO PALAZUELOS CALDERON
SALAS, DOLORES
VICENTE MARTIN SANCHEZ
COS JUEZ, FRANCISCO JAVIER DE
Volver