Abstract: We address principles of time evolution in classical mechanical/thermodynamical systems in translational and rotational motion, in three cases: when there is conservation of mechanical energy, when there is energy dissipation and when there is mechanical energy production. In the first case, the time derivative of the Hamiltonian vanishes. In the second one, when dissipative forces are present, the time evolution is governed by the minimum potential energy principle, or, equivalently, maximum increase of the entropy of the universe. Finally, in the third situation, when internal sources of work are available to the system, it evolves in time according to the principle of minimum Gibbs function. We apply the Lagrangian formulation to the systems, dealing with the non-conservative forces using restriction functions such as the Rayleigh dissipative function.
Autoría: Güémez J., Fiolhais M.,
Fuente: European Journal of Physics, 2018, 39(4), 045010
Editorial: Institute of Physics Publishing
Fecha de publicación: 01/05/2018
Nº de páginas: 10
Tipo de publicación: Artículo de Revista
DOI: 10.1088/1361-6404/aabbfb
ISSN: 0143-0807,1361-6404
Url de la publicación: https://doi.org/10.1088/1361-6404/aabbfb