Buscar

Estamos realizando la búsqueda. Por favor, espere...

Global optimization via quadratic disjunctive programming for water networks design with energy recovery

Abstract: Generalized disjunctive programming (GDP) models with bilinear and concave constraints, often seen in water network design, are challenging optimization problems. This work proposes quadratic and piecewise linear approximations for nonlinear terms to reformulate GDP models into quadratic GDP (QGDP) models that suitable solvers may solve more efficiently. We illustrate the benefits of the quadratic reformulation with a water treatment network design problem in which nonconvexities arise from bilinear terms in the mixers? mass balances and concave investment cost functions of treatment units. Given the similarities with water network design problems, we suggest quadratic approximation for the GDP model for the optimal design of a large-scale reverse electrodialysis (RED) process. This power technology can recover energy from salinity differences between by-product streams of the water sector, such as desalination brine mixed with regenerated wastewater effluents. The solver Gurobi excels in handling QGDP problems, but weighing the problem?s precision and tractability balance is crucial. The piecewise linear approximation yields more accurate yet larger QGDP models that may require longer optimization times in large-scale process synthesis problems

Otras comunicaciones del congreso o articulos relacionados con autores/as de la Universidad de Cantabria

 Autoría: Tristán C., Fallanza M., Ibáñez R., Grossmann I.E., Bernal Neira D.E.,

 Congreso: European Symposium on Computer Aided Process Engineering: ESCAPE (34º : 2024 : Florencia, Italia)

 Editorial: Elsevier

 Fecha de publicación: 01/06/2024

 Nº de páginas: 6

 Tipo de publicación: Comunicación a Congreso

 DOI: 10.1016/B978-0-443-28824-1.50361-6

 ISSN: 1570-7946

 Proyecto español: TED2021-129874B-I00

 Url de la publicación: https://doi.org/10.1016/B978-0-443-28824-1.50361-6

Autoría

CAROLINA TRISTAN TEJA

IGNACIO GROSSMANN EPPER

DAVID ESTEBAN BERNAL NEIRA