Buscar

Estamos realizando la búsqueda. Por favor, espere...

Multi-channel factor analysis: identifiability and asymptotics

Abstract: Recent work (Ramírez et al. 2020) has introduced Multi-Channel Factor Analysis (MFA) as an extension of factor analysis to multi-channel data that allows for latent factors common to all channels as well as factors specific to each channel. This paper validates the MFA covariance model and analyzes the statistical properties of the MFA estimators. In particular, a thorough investigation of model identifiability under varying latent factor structures is conducted, and sufficient conditions forgeneric global identifiability of MFA are obtained. The development of these identifiability conditions enables asymptotic analysis of estimators obtained by maximizing a Gaussian likelihood, which are shown to be consistent and asymptotically normal even under misspecification of the latent factor distribution.

 Autoría: Stanton G., Ramirez D., Santamaria I., Scharf L., Wang H.,

 Fuente: IEEE Transactions on Signal Processing, 2024, 72, 3562-3577

 Editorial: Institute of Electrical and Electronics Engineers, Inc.

 Fecha de publicación: 12/07/2024

 Nº de páginas: 16

 Tipo de publicación: Artículo de Revista

 DOI: 10.1109/TSP.2024.3427004

 ISSN: 1053-587X,1941-0476

 Proyecto español: PID2022-137099NB-C43

 Url de la publicación: https://doi.org/10.1109/TSP.2024.3427004

Autoría

STANTON, GRAY

DAVID RAMIREZ GARCIA

WANG, HAONAN