Buscar

Estamos realizando la búsqueda. Por favor, espere...

Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation

Abstract: The Kardar-Parisi-Zhang (KPZ) equation is a paradigmatic model of nonequilibrium low-dimensional systems with spatiotemporal scale invariance, recently highlighting universal behavior in fluctuation statistics. Its space derivative, namely the noisy Burgers equation, has played a very important role in its study, predating the formulation of the KPZ equation proper, and being frequently held as an equivalent system.We show that, while differences in the scaling exponents for the two equations are indeed due to a mere space derivative, the field statistics behave in a remarkably different way: while the KPZ equation follows the Tracy-Widom distribution, its derivative displays Gaussian behavior, hence being in a different universality class. We reach this conclusion via direct numerical simulations of the equations, supported by a dynamic renormalization group study of field statistics.

 Fuente: Physical Review E, 2020, 101(5), 052126

 Editorial: American Physical Society

 Fecha de publicación: 19/05/2020

 Nº de páginas: 9

 Tipo de publicación: Artículo de Revista

 DOI: 10.1103/PhysRevE.101.052126

 ISSN: 1539-3755,1550-2376,2470-0045,2470-0053

 Url de la publicación: https://doi.org/10.1103/PhysRevE.101.052126

Autoría

CUERNO REJADO, RODOLFO