Buscar

Estamos realizando la búsqueda. Por favor, espere...

Analytical phase reduction for weakly nonlinear oscillators

Abstract: Phase reduction is a dimensionality reduction scheme to describe the dynamics of nonlinear oscillators with a single phase variable. While it is crucial in synchronization analysis of coupled oscillators, analytical results are limited to few systems. In this work, we analytically perform phase reduction for a wide class of oscillators by extending the Poincaré?Lindstedt perturbation theory. We exemplify the utility of our approach by analyzing an ensemble of Van der Pol oscillators, where the derived phase model provides analytical predictions of their collective synchronization dynamics.

 Fuente: Chaos, Solitons and Fractals, 2023, 176, 114117

 Editorial: Pergamon/Elsevier

 Fecha de publicación: 01/11/2023

 Nº de páginas: 8

 Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.chaos.2023.114117

 ISSN: 0960-0779,1873-2887

 Url de la publicación: https://doi.org/10.1016/j.chaos.2023.114117

Autoría

NAKAO, HIROYA