Estamos realizando la búsqueda. Por favor, espere...
1454
37
174
32321
4695
2695
363
420
Abstract: Phase reduction is a dimensionality reduction scheme to describe the dynamics of nonlinear oscillators with a single phase variable. While it is crucial in synchronization analysis of coupled oscillators, analytical results are limited to few systems. In this work, we analytically perform phase reduction for a wide class of oscillators by extending the Poincaré-Lindstedt perturbation theory. We exemplify the utility of our approach by analyzing an ensemble of Van der Pol oscillators, where the derived phase model provides analytical predictions of their collective synchronization dynamics.
Fuente: Chaos, Solitons and Fractals, 2023, 176, 114117
Editorial: Pergamon/Elsevier
Fecha de publicación: 01/11/2023
Nº de páginas: 8
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.chaos.2023.114117
ISSN: 0960-0779,1873-2887
Url de la publicación: https://doi.org/10.1016/j.chaos.2023.114117
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
IVAN LEON MERINO
NAKAO, HIROYA
Volver