Estamos realizando la búsqueda. Por favor, espere...
1436
37
174
30983
4514
2676
361
406
Abstract: Several fluid systems are characterised by time reversal and parity breaking. Examples of such phenomena arise both in quantum and classical hydrodynamics. In these situations, the viscosity tensor, often dubbed "odd viscosity", becomes non-dissipative. At the mathematical level, this fact translates into a loss of derivatives at the level of a priori estimates: while the odd viscosity term depends on derivatives of the velocity field, no parabolic smoothing effect can be expected. In the present paper, we establish a well-posedness theory in Sobolev spaces for a system of incompressible non-homogeneous fluids with odd viscosity. The crucial point of the analysis is the introduction of a set of good unknowns, which allow for the emerging of a hidden hyperbolic structure underlying the system of equations. It is exactly this hyperbolic structure which makes it possible to circumvent the derivative loss and propagate high enough Sobolev norms of the solution. The well-posedness result is local in time; two continuation criteria are also established.
Fuente: Journal des Mathematiques Pures et Appliquees, 2024, 187, 58-137
Editorial: Elsevier
Fecha de publicación: 01/07/2024
Nº de páginas: 80
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.matpur.2024.05.006
ISSN: 1776-3371,0021-7824
Proyecto español: PID2019-109348GA-I00
Url de la publicación: https://doi.org/10.1016/j.matpur.2024.05.006
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
FRANCESCO FANELLI
RAFAEL GRANERO BELINCHON
STEFANO SCROBOGNA
Volver