Buscar

Estamos realizando la búsqueda. Por favor, espere...

Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials

Abstract: We give a description of the tropical Severi variety of univariate polynomials of degree n having two double roots. We show that, as a set, it is given as the union of three explicit types of cones of maximal dimension n - 1, where only cones of two of these types are cones of the secondary fan of {0,...,n}. Through Kapranov's theorem, this goal is achieved by a careful study of the possible valuations of the elementary symmetric functions of the roots of a polynomial with two double roots. Despite its apparent simplicity, the computation of the tropical Severi variety has both combinatorial and arithmetic ingredients.

 Autoría: Dickenstein A., Herrero M., Tabera L.,

 Fuente: Israel Journal of Mathematics, 2017, 221, 741-777

 Editorial: Springer

 Año de publicación: 2017

 Nº de páginas: 37

 Tipo de publicación: Artículo de Revista

 DOI: 10.1007/s11856-017-1573-0

 ISSN: 0021-2172,1565-8511

 Proyecto español: MTM2014-54141-P

 Url de la publicación: https://doi.org/10.1007/s11856-017-1573-0

Autoría

DICKENSTEIN, ALICIA

HERRERO, MARÍA ISABEL