Buscar

Estamos realizando la búsqueda. Por favor, espere...

A parametric version of the Hilbert-Hurwitz theorem using hypercircles

Abstract: Let K be a characteristic zero field, let ? be an algebraic element over K and C a rational curve defined over K given by a parametrization ? with coefficients in K?(?). We propose an algorithm to solve the following problem, that is, a parametric version of Hilbert-Hurwitz: To compute a linear fraction u=at+b:ct+d such that ??(u) has coefficients over an algebraic extension of K of degree at most two and a conic K-birational to C. Moreover, if the degree of C is odd or ? is of odd degree over K, we can compute a parametrization of C with coefficients over K. The problem is solved without implicitization methods nor analyzing the singularities of C.

 Autoría: Tabera L.F.,

 Fuente: Mathematics of Computation, 2017, 86(308), 3001-3018

 Editorial: American Mathematical Society

 Fecha de publicación: 01/11/2017

 Nº de páginas: 18

 Tipo de publicación: Artículo de Revista

 DOI: 10.1090/mcom/3202

 ISSN: 0025-5718,1088-6842

 Url de la publicación: https://doi.org/10.1090/mcom/3202