Estamos realizando la búsqueda. Por favor, espere...
1460
37
173
32792
4719
2715
375
421
Abstract: We consider the spectral problem for the diffusion operator considered in a domain containing thin tubes. A new version of the method of partial asymptotic decomposition of the domain is introduced to reduce the dimension inside the tubes, getting a model of hybrid dimensions. The method truncates the tubes at some small distance from the ends of the tubes and replaces the longer part of the tubes with segments. At the interface of the three-dimensional and one-dimensional subdomains, special junction conditions are set: the pointwise continuity of the flux and the continuity of the average over a cross-section of the eigenfunctions. We obtain conditions on the ratio of the characteristic sizes in the transverse and longitudinal directions that ensure the closeness of two spectra, i.e. of the diffusion operator in the full-dimensional domain and the partially reduced one, keeping the conservation of the multiplicity, all up to a prescribed accuracy.
Fuente: Applicable Analysis, 2025, 104(3), 419-441
Editorial: Gordon and Breach
Año de publicación: 2025
Nº de páginas: 22
Tipo de publicación: Artículo de Revista
DOI: 10.1080/00036811.2024.2368699
ISSN: 0003-6811,1563-504X,1026-7360
Proyecto español: PID2022-137694NB-I00
Url de la publicación: https://doi.org/10.1080/00036811.2024.2368699
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
AMOSOV, ANDREY
DELFINA GOMEZ GANDARILLAS
PANASENKO, GRIGORY
MARIA EUGENIA PEREZ MARTINEZ
Volver