Buscar

Estamos realizando la búsqueda. Por favor, espere...

A numerical algorithm for computing the zeros of parabolic cylinder functions in the complex plane

Abstract: A numerical algorithm (implemented in Matlab) for computing the zeros of the parabolic cylinder function U(a, z) in domains of the complex plane is presented. The algorithm uses accurate approximations to the first zero plus a highly efficient method based on a fourth-order fixed point method with the parabolic cylinder functions computed by Taylor series and carefully selected steps, to compute the rest of the zeros. For |a| small, the asymptotic approximations are complemented with a few fixed point iterations requiring the evaluation of U(a, z) and U(a,z) in the region where the complex zeros are located. Liouville Green expansions are derived to enhance the performance of a computational scheme to evaluate U(a, z) and U(a,z) in that region. Several tests show the accuracy and efficiency of the numerical algorithm.

 Fuente: BIT numerical mathematics, 2025, 65(2), 20

 Editorial: Springer Nature

 Fecha de publicación: 01/06/2025

 Nº de páginas: 16

 Tipo de publicación: Artículo de Revista

 DOI: 10.1007/s10543-025-01065-w

 ISSN: 1572-9125

 Proyecto español: PID2021-127252NB-I00

 Url de la publicación: https://doi.org/10.1007/s10543-025-01065-w