Estamos realizando la búsqueda. Por favor, espere...
1426
37
175
34264
4830
2773
383
432
Abstract: A numerical algorithm (implemented in Matlab) for computing the zeros of the parabolic cylinder function U(a, z) in domains of the complex plane is presented. The algorithm uses accurate approximations to the first zero plus a highly efficient method based on a fourth-order fixed point method with the parabolic cylinder functions computed by Taylor series and carefully selected steps, to compute the rest of the zeros. For |a| small, the asymptotic approximations are complemented with a few fixed point iterations requiring the evaluation of U(a, z) and U(a,z) in the region where the complex zeros are located. Liouville Green expansions are derived to enhance the performance of a computational scheme to evaluate U(a, z) and U(a,z) in that region. Several tests show the accuracy and efficiency of the numerical algorithm.
Fuente: BIT numerical mathematics, 2025, 65(2), 20
Editorial: Springer Nature
Fecha de publicación: 01/06/2025
Nº de páginas: 16
Tipo de publicación: Artículo de Revista
DOI: 10.1007/s10543-025-01065-w
ISSN: 1572-9125
Proyecto español: PID2021-127252NB-I00
Url de la publicación: https://doi.org/10.1007/s10543-025-01065-w
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
DUNSTER, T.M.
AMPARO GIL GOMEZ
DIEGO RUIZ ANTOLIN
JOSE JAVIER SEGURA SALA
Volver