Buscar

Estamos realizando la búsqueda. Por favor, espere...

Exploring the complex interplay of anisotropies in magnetosomes of magnetotactic bacteria

Abstract: Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ~25 kJ/m3 and M. gryphiswaldense ~ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs m0H, up to 1 T). Above the Verwey transition temperature (~110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner-Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22-24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.

 Autoría: Gandia D., Marcano L., Gandarias L., G. Gubieda A., García-Prieto A., Fernández Barquín L., Espeso J.I., Martín Jefremovas E., Orue I., Abad Diaz de Cerio A., Fdez-Gubieda M.L., Alonso J.,

 Fuente: ACS Omega, 2025, 16(16), 16061-16072

 Editorial: American Chemical Society

 Fecha de publicación: 01/04/2025

 Nº de páginas: 12

 Tipo de publicación: Artículo de Revista

 DOI: 10.1021/acsomega.4c09371

 ISSN: 2470-1343

 Proyecto español: PID2020-115704RB-C3

 Url de la publicación: https://doi.org/10.1021/acsomega.4c09371

Autoría

GANDIA, DAVID

LOURDES MARCANO PRIETO

GANDARIAS, LUCÍA

G. GUBIEDA, ALICIA

ANA GARCIA PRIETO

ELIZABETH MARTIN JEFREMOVAS

ORUE, IÑAKI

ABAD DIAZ DE CERIO, ANA

FERNÁNDEZ GUBIEDA, MARÍA LUISA