Estamos realizando la búsqueda. Por favor, espere...
1600
37
173
25282
4167
2489
330
Abstract: Coastal floods often coincide with large waves, storm surge and tides. Thus, joint probability methods are needed to properly characterize extreme sea levels. This work introduces a statistical downscaling framework for multivariate extremes that relates the non-stationary behavior of coastal flooding events to the occurrence probability of daily weather patterns. The proposed method is based on recently-developed weather-type methods to predict extreme events (e.g., significant wave height, mean wave period, surge level) from large-scale sea-level pressure fields. For each weather type, variables of interest are modeled using Generalized Extreme Value (GEV) distributions and a Gaussian copula for modelling the interdependence between variables. The statistical dependence between consecutive days is addressed by defining a climate-based extremal index for each weather type. This work allows attribution of extreme events to specific weather conditions, enhancing the knowledge of climate-driven coastal flooding.
Fuente: Ocean Modelling Volume 104, August 2016, Pages 242–251
Editorial: Elsevier Ltd
Fecha de publicación: 01/08/2016
Nº de páginas: 10
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.ocemod.2016.06.008
ISSN: 1463-5003,1463-5011
Proyecto español: BIA2014-59643-R .
Url de la publicación: https://doi.org/10.1016/j.ocemod.2016.06.008
Leer publicación
ANA CRISTINA RUEDA ZAMORA
PAULA CAMUS BRAÑA
ANTONIO TOMAS SAMPEDRO
VITOUSEK, S.
FERNANDO JAVIER MENDEZ INCERA
Volver