Estamos realizando la búsqueda. Por favor, espere...
1451
37
174
32221
4693
2695
362
420
Abstract: This paper presents a regularization method for program complexity control of linear genetic programming tuned for transcendental elementary functions. Our goal is to improve the performance of evolutionary methods when solving symbolic regression tasks involving Pfaffian functions such as polynomials, analytic algebraic and transcendental operations like sigmoid, inverse trigonometric and radial basis functions. We propose the use of straight line programs as the underlying structure for representing symbolic expressions. Our main result is a sharp upper bound for the Vapnik Chervonenkis dimension of families of straight line programs containing transcendental elementary functions. This bound leads to a penalization criterion for the mean square error based fitness function often used in genetic programming for solving inductive learning problems. Our experiments show that the new fitness function gives very good results when compared with classical statistical regularization methods (such as Akaike and Bayesian Information Criteria) in almost all studied situations, including some benchmark real-world regression problems.
Fuente: Expert Systems with Applications, 2016, 57, 76-90
Editorial: Elsevier Ltd
Fecha de publicación: 01/09/2016
Nº de páginas: 14
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.eswa.2016.03.003
ISSN: 0957-4174,1873-6793
Proyecto español: MTM2014-55262-P
Url de la publicación: https://doi.org/10.1016/j.eswa.2016.03.003
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
JOSE LUIS MONTAÑA ARNAIZ
CESAR LUIS ALONSO GONZALEZ
CRUZ ENRIQUE BORGES HERNANDEZ
CRISTINA TIRNAUCA
Volver