Estamos realizando la búsqueda. Por favor, espere...
1457
37
174
32685
4710
2711
372
420
Abstract: We study expected Riesz s-energies and linear statistics of some determinantal processes on the sphere Sd. In particular, we compute the expected Riesz and logarithmic energies of the determinantal processes given by the reproducing kernel of the space of spherical harmonics. This kernel defines the so called harmonic ensemble on Sd. With these computations we improve previous estimates for the discrete minimal energy of configurations of points in the sphere. We prove a comparison result for Riesz 2-energies of points defined through determinantal point processes associated with isotropic kernels. As a corollary we get that the Riesz 2-energy of the harmonic ensemble is optimal among ensembles defined by isotropic kernels with the same trace. Finally, we study the variance of smooth and rough linear statistics for the harmonic ensemble and compare the results with the variance for the spherical ensemble (in S2). © 2016 Elsevier Inc.
Fuente: Journal of Complexity, 2016, 37, 76-109
Editorial: Academic Press Inc.
Fecha de publicación: 01/12/2016
Nº de páginas: 34
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.jco.2016.08.001
ISSN: 0885-064X,1090-2708
Proyecto español: MTM2014-51834-P
Url de la publicación: http://dx.doi.org/10.1016/j.jco.2016.08.001
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
CARLOS BELTRAN ALVAREZ
MARZO, JORDI
ORTEGA-CERDÀ, J.
Volver