Estamos realizando la búsqueda. Por favor, espere...
1551
37
173
26083
4132
2532
334
Abstract: In this paper we obtain closed expressions for the probability distribution function of aggregated risks with multivariate dependent Pareto distributions. We work with the dependent multivariate Pareto type II proposed by Arnold (1983, 2015), which is widely used in insurance and risk analysis. We begin with an individual risk model, where the probability density function corresponds to a second kind beta distribution, obtaining the VaR, TVaR and several other tail risk measures. Then, we consider a collective risk model based on dependence, where several general properties are studied. We study in detail some relevant collective models with Poisson, negative binomial and logarithmic distributions as primary distributions. In the collective Pareto?Poisson model, the probability density function is a function of the Kummer confluent hypergeometric function, and the density of the Pareto?negative binomial is a function of the Gauss hypergeometric function. Using data based on one-year vehicle insurance policies taken out in 2004?2005 (Jong and Heller, 2008) we conclude that our collective dependent models outperform other collective models considered in the actuarial literature in terms of AIC and CAIC statistics.
Autoría: Sarabia J., Gómez-Déniz E., Prieto F., Jordá V.,
Fuente: Insurance: Mathematics and Economics, 71, 2016, p. 154-163
Editorial: Elsevier
Año de publicación: 2016
Nº de páginas: 10
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.insmatheco.2016.07.009
ISSN: 0167-6687,1873-5959
Url de la publicación: http://dx.doi.org/10.1016/j.insmatheco.2016.07.009
Leer publicación
JOSE MARIA SARABIA ALEGRIA
GÓMEZ DÉNIZ, EMILIO
FAUSTINO PRIETO MENDOZA
VANESA JORDA GIL
Volver