Buscar

Estamos realizando la búsqueda. Por favor, espere...

 Detalle_Publicacion

Particle-based meta-model for continuous breakpoint optimization in smooth local-support curve fitting

Abstract: This paper concerns the process of computing the underlying function of a given set of data points. In many cases, it is not possible to obtain an analytical solution for this problem so the goal is transformed into that of computing a meta-model instead. In this paper we seek to compute a smooth meta-model of such points based on local-support free-form parametric curves. Given an initial parameterization, our method applies a particle-based metaheuristic approach to determine optimal values for the breakpoints and poles of the fitting curve, which is well-known to be a continuous nonlinear optimization problem. The performance of our approach is evaluated by its application to two illustrative examples: a synthetic academic shape and a real-world shape. Our experimental results show that the proposed scheme performs very well, even for shapes with underlying functions exhibiting challenging features, such as self-intersections and sharp changes of curvature. Comparative results show that our approach outperforms previous approaches in terms of generality and fitting error accuracy.

 Fuente: Applied Mathematics and Computation, 2016, 275, 195-212

Editorial: Elsevier Inc.

 Fecha de publicación: 01/02/2016

Nº de páginas: 18

Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.amc.2015.11.050

ISSN: 0096-3003,1873-5649

Proyecto español: TIN2012-30768

Url de la publicación: https://doi.org/10.1016/j.amc.2015.11.050