Abstract: BACKGROUND:
Most primary severe hypertriglyceridemias (HTGs) are diagnosed in adults, but their molecular foundations have not been completely elucidated.
OBJECTIVE:
We aimed to identify rare dysfunctional mutations in genes encoding regulators of lipoprotein lipase (LPL) function in patients with familial and non-familial primary HTG.
METHODS:
We sequenced promoters, exons, and exon-intron boundaries of LPL, APOA5, LMF1, and GPIHBP1 in 118 patients with severe primary HTG (triglycerides >500 mg/dL) and 53 normolipidemic controls. Variant functionality was analyzed using predictive software and functional assays for mutations in regulatory regions.
RESULTS:
We identified 29 rare variants, 10 of which had not been previously described: c.(-16A>G), c.(1018+2G>A), and p.(His80Arg) in LPL; p.(Arg143Alafs*57) in APOA5; p.(Val140Ile), p.(Leu235Ile), p.(Lys520*), and p.(Leu552Arg) in LMF1; and c.(-83G>A) and c.(-192A>G) in GPIHBP1. The c.(1018+2G>A) variant led to deletion of exon 6 in LPL cDNA, whereas the c.(-16A>G) analysis showed differences in the affinity for nuclear proteins. Overall, 20 (17.0%) of the patients carried at least one allele with a rare pathogenic variant in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant was not associated with lipid values, family history of HTG, clinical diagnosis, or previous pancreatitis.
CONCLUSIONS:
Less than one in five subjects with triglycerides >500 mg/dL and no major secondary cause for HTG may carry a rare pathogenic mutation in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant is not associated with a differential phenotype