Estamos realizando la búsqueda. Por favor, espere...
1434
37
173
30385
4471
2646
360
402
Abstract: We address homogenization problems of variational inequalities for the p-Laplace operator in a domain of Rn (n ? 3, p ? [2, n)) periodically perforated by balls of radius O(??) where ? > 1 and ? is the size of the period. The perforations are distributed along a (n ? 1)-dimensional manifold ? , and we impose constraints for solutions and their fluxes (associated with the p-Laplacian) on the boundary of the perforations. These constraints imply that the solution is positive and that the flux is bounded from above by a negative, nonlinear monotonic function of the solution multiplied by a parameter ? ?? , ? ? R and ? is a small parameter that we shall make to go to zero. We analyze different relations between the parameters p, n, ?, ? and ?, and obtain homogenized problems which are completely new in the literature even for the case p = 2.
Autoría: Gómez D., Pérez E., Podolskii A., Shaposhnikova T.,
Fuente: Applied Mathematics and Optimization, 2017, 1-19
Editorial: Springer
Fecha de publicación: 01/11/2017
Nº de páginas: 19
Tipo de publicación: Artículo de Revista
DOI: 10.1007/s00245-017-9453-x
ISSN: 0095-4616,1432-0606
Proyecto español: MTM2013-44883-P
Url de la publicación: https://link.springer.com/article/10.1007/s00245-017-9453-x
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
DELFINA GOMEZ GANDARILLAS
MARIA EUGENIA PEREZ MARTINEZ
PODOLSKII, A. V.
SHAPOSHNIKOVA, T. A.
Volver