Estamos realizando la búsqueda. Por favor, espere...
1436
37
173
30460
4471
2648
361
403
Abstract: The Kuramoto model (KM) is a theoretical paradigm for investigating the emergence of rhythmic activity in large populations of oscillators. A remarkable example of rhythmogenesis is the feedback loop between excitatory (E) and inhibitory (I) cells in large neuronal networks. Yet, although the EI-feedback mechanism plays a central role in the generation of brain oscillations, it remains unexplored whether the KM has enough biological realism to describe it. Here we derive a two-population KM that fully accounts for the onset of EI-based neuronal rhythms and that, as the original KM, is analytically solvable to a large extent. Our results provide a powerful theoretical tool for the analysis of large-scale neuronal oscillations.
Fuente: Physical Review Letters, 2018, 120(24), 244101
Editorial: American Physical Society
Fecha de publicación: 01/06/2018
Nº de páginas: 6
Tipo de publicación: Artículo de Revista
DOI: 10.1103/PhysRevLett.120.244101
ISSN: 0031-9007,1079-7114
Proyecto español: FIS2016-74957-P
Url de la publicación: https://doi.org/10.1103/PhysRevLett.120.244101
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
MONTBRIÓ, ERNEST
DIEGO SANTIAGO PAZO BUENO
Volver