Estamos realizando la búsqueda. Por favor, espere...
1600
37
173
25282
4167
2489
330
Abstract: The Kuramoto model (KM) is a theoretical paradigm for investigating the emergence of rhythmic activity in large populations of oscillators. A remarkable example of rhythmogenesis is the feedback loop between excitatory (E) and inhibitory (I) cells in large neuronal networks. Yet, although the EI-feedback mechanism plays a central role in the generation of brain oscillations, it remains unexplored whether the KM has enough biological realism to describe it. Here we derive a two-population KM that fully accounts for the onset of EI-based neuronal rhythms and that, as the original KM, is analytically solvable to a large extent. Our results provide a powerful theoretical tool for the analysis of large-scale neuronal oscillations. © 2018 American Physical Society.
Fuente: PHYSICAL REVIEW LETTERS 120, 244101 (2018)
Editorial: American Physical Society
Fecha de publicación: 01/06/2018
Nº de páginas: 6
Tipo de publicación: Artículo de Revista
DOI: 10.1103/PhysRevLett.120.244101
ISSN: 0031-9007,1079-7114
Proyecto español: FIS2016-74957-P; SI2016-75688-P; PCIN-2015-127
Url de la publicación: https://doi.org/10.1103/PhysRevLett.120.244101
Consultar en UCrea Leer publicación
MONTBRIÓ, ERNEST
DIEGO SANTIAGO PAZO BUENO
Volver