Buscar

Estamos realizando la búsqueda. Por favor, espere...

Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations

Abstract: In this paper we consider a dd-dimensional (d=1,2d=1,2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order ??(0,2)??(0,2). We prove uniform in time boundedness of its solution in the supercritical range ?>d(1?c)?>d(1?c), where cc is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for ?u(t)?u??L??0?u(t)?u??L??0, where u??1u??1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result.

 Fuente: Discrete and Continuous Dynamical Systems - Series S, 2020, 13(2), 139-164

 Editorial: American Institute of Mathematical Sciences

 Fecha de publicación: 01/04/2020

 Nº de páginas: 26

 Tipo de publicación: Artículo de Revista

 DOI: 10.3934/dcdss.2020008

 ISSN: 1937-1632,1937-1179

 Proyecto español: MTM2014-59488-P

 Url de la publicación: https://doi.org/10.3934/dcdss.2020008

Autoría