Estamos realizando la búsqueda. Por favor, espere...
1443
37
172
30625
4483
2658
361
406
Abstract: We consider a spectral problem for the Laplacian operator in a planar T-like shaped thin structure , where E; denotes the transversal thickness of both branches. We assume the homogeneous Dirichlet boundary condition on the ends of the branches and the homogeneous Neumann boundary condition on the remaining part of the boundary of . We study the asymptotic behavior, as ; tends to zero, of the high frequencies of such a problem. Unlike the asymptotic behavior of the low frequencies where the limit problem involves only longitudinal vibrations along each branch of the T-like shaped thin structure (i.e. 1D limit spectral problems), we obtain a two dimensional limit spectral problem which allows us to capture other kinds of vibrations. We also give a characterization of the asymptotic form of the eigenfunctions originating these vibrations.
Fuente: Journal de Mathématiques Pures et Appliquées, 2020, 134, 299-327
Editorial: Elsevier
Fecha de publicación: 01/02/2020
Nº de páginas: 32
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.matpur.2019.06.005
ISSN: 1776-3371,0021-7824
Proyecto español: MTM2013-44883-P
Url de la publicación: https://doi.org/10.1016/j.matpur.2019.06.005
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
GAUDIELLO, ANTONIO
DELFINA GOMEZ GANDARILLAS
MARIA EUGENIA PEREZ MARTINEZ
Volver