Buscar

Estamos realizando la búsqueda. Por favor, espere...

Diffractive elements inscribed at end-fiber surface by femtosecond laser

Abstract: In this paper, diffractive elements in one and two dimensions have been inscribed at the end-face of single and multicore optical fibers using femtosecond lasers. Different sensing applications have been also presented on the basis of their projected far-field patterns. The manufacturing of 2D structures was achieved using two approaches: line writing and its equivalent point-by-point technique in order to speed up the process. Specific properties of both the techniques have been exploited by inscribing 2-direction and circular gratings. When diffraction grating is inscribed at the end-face of a four core fiber, the 2D interference pattern is transferred into diffraction orders with the possibility of decoupling the interferometric contribution of selected core. Particularly, with a circular diffraction grating, the multicore far-field pattern exhibits two perpendicular and independent interference patterns, as only opposite cores are interfering with each other. These patterns exhibit period and, hence, sensitivity with phase perturbation, proportional to diffraction order angle. The 2D diffraction grating inscribed in the single mode fiber has been employed for bidimensional displacement insensitive sensing, exhibiting linear response, while aforementioned structures written in multicore fiber have been proposed for bending vector sensing, thereby showing higher sensitivity than that of its pristine counterpart.

 Autoría: Pallares-Aldeiturriaga D., Rodriguez-Cobo L., Lomer M., Lopez-Higuera J.,

 Fuente: Journal of Lightwave Technology, 2019, 37(18), 4523-4530

 Editorial: IEEE

 Fecha de publicación: 15/09/2019

 Nº de páginas: 8

 Tipo de publicación: Artículo de Revista

 DOI: 10.1109/JLT.2019.2909145

 ISSN: 0733-8724,1558-2213

 Proyecto español: TEC2016-76021-C2-2-R

 Url de la publicación: https://doi.org/10.1109/JLT.2019.2909145

Autoría

DAVID PALLARES ALDEITURRIAGA

LUIS RODRIGUEZ COBO

MAURO MATIAS LOMER BARBOZA