Estamos realizando la búsqueda. Por favor, espere...
1549
37
172
26128
4138
2532
334
Abstract: The nucleator is a method to estimate the volume of a particle, i.e., a compact subset of R3, which is widely used in Stereology. It is based on geometric sampling and known to be unbiased. However, the prediction of the variance of this estimator is non-trivial and depends on the underlying sampling scheme. We propose well established tools from quasi-Monte Carlo integration to address this problem. In particular, we show how the theory of reproducing kernel Hilbert spaces can be used for variance prediction and how the variance of estimators based on the nucleator idea can be reduced using lattice (or lattice-like) points. We illustrate and test our results on various examples.
Fuente: Image Anal Stereol 2019;38:141-150
Año de publicación: 2019
Nº de páginas: 10
Tipo de publicación: Artículo de Revista
DOI: 10.5566/ias.2012
ISSN: 1580-3139,1854-5165
Consultar en UCrea Leer publicación
DOMINGO GOMEZ PEREZ
JAVIER GONZALEZ VILLA
PAUSINGER,FLORIAN
Volver