Buscar

Estamos realizando la búsqueda. Por favor, espere...

A Convolutional Neural Network-Based Method for Human Movement Patterns Classification in Alzheimer?s Disease

Abstract: Alzheimer´s disease (AD) constitutes a neurodegenerative pathology that presents mobility disorders as one of its earliest symptoms. Current smartphones integrate accelerometers that can be used to collect mobility data of Alzheimer´s patients. This paper describes a method that processes these accelerometer data and a convolutional neural network (CNN) that classifies the stage of the disease according to the mobility patterns of the patient. The method is applied in a case study with 35 Alzheimer´s patients, in which a classification success rate of 91% was obtained.

 Congreso: International Conference on Ubiquitous Computing and Ambient Intelligence: UCAmI (13th : 2019 : Toledo)

 Editorial: MDPI

 Año de publicación: 2019

 Nº de páginas: 9

 Tipo de publicación: Comunicación a Congreso

 DOI: 10.3390/proceedings2019031072

 ISSN: 2504-3900

 Url de la publicación: https://doi.org/10.3390/proceedings2019031072

Autoría

SALOMÓN, SERGIO

SANTOS BRINGAS TEJERO

LAGE, CARMEN