Estamos realizando la búsqueda. Por favor, espere...
1446
37
174
31614
4642
2689
362
417
Abstract: Alzheimer´s disease (AD) constitutes a neurodegenerative pathology that presents mobility disorders as one of its earliest symptoms. Current smartphones integrate accelerometers that can be used to collect mobility data of Alzheimer´s patients. This paper describes a method that processes these accelerometer data and a convolutional neural network (CNN) that classifies the stage of the disease according to the mobility patterns of the patient. The method is applied in a case study with 35 Alzheimer´s patients, in which a classification success rate of 91% was obtained.
Congreso: International Conference on Ubiquitous Computing and Ambient Intelligence: UCAmI (13th : 2019 : Toledo)
Editorial: MDPI
Año de publicación: 2019
Nº de páginas: 9
Tipo de publicación: Comunicación a Congreso
DOI: 10.3390/proceedings2019031072
ISSN: 2504-3900
Url de la publicación: https://doi.org/10.3390/proceedings2019031072
Repositorio UCrea Leer publicación
SALOMÓN, SERGIO
RAFAEL DUQUE MEDINA
SANTOS BRINGAS TEJERO
JOSE LUIS MONTAÑA ARNAIZ
LAGE, CARMEN
Volver