Abstract: In previous work by the ?rst and third author with Matthew Baker, a family of bijections between bases of a regular matroid and the Jacobian group of the matroid wasgiven. Thecoreoftheworkisageometricconstructionusingzonotopaltilingsthat produces bijections between the bases of a realizable oriented matroid and the set of (?,??)-compatibleorientationswithrespecttosomeacycliccircuit(respectively, cocircuit) signature ? (respectively, ??). In this work, we extend this construction to general oriented matroids and circuit (respectively, cocircuit) signatures coming from generic single-element liftings (respectively, extensions). As a corollary, when both signatures are induced by the same lexicographic data, we give a new (bijective) proof of the interpretation of TM(1,1) using orientation activity due to Gioan and Las Vergnas. Here TM(x,y) is the Tutte polynomial of the matroid.
Congreso: Conference on Formal Power Series and Algebraic Combinatorics : FPSAC (31st : 2019 : Ljubljana)
Editorial: Institut de recherche mathématique avancée
Año de publicación: 2019
Nº de páginas: 12
Tipo de publicación: Comunicación a Congreso
ISSN: 1286-4889
Proyecto español: MTM2017-83750-P
Url de la publicación: https://mat.ub.edu/EMIS/journals/SLC/