Estamos realizando la búsqueda. Por favor, espere...
1452
37
174
32671
4708
2710
372
420
Abstract: Input data of a data mining algorithm must conform to a very specific tabular format. Data scientists arrange data into that format by creating long and complex scripts, where different low-level operations are performed, and which can be a time-consuming and error-prone process. To alleviate this situation, we present Lavoisier, a declarative language for data selection and formatting in a data mining context. Using Lavoisier, script size for data preparation can be reduced by 40% on average, and by up to 80% in some cases. Additionally, accidental complexity present in state-of-the-art technologies is considerably mitigated.
Fuente: Journal of Computer Languages, 2020, 60, 100987
Editorial: Elsevier
Fecha de publicación: 01/10/2020
Nº de páginas: 19
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.cola.2020.100987
ISSN: 2590-1184,2665-9182
Proyecto español: TIN2017-86520-C3-3-R
Url de la publicación: https://doi.org/10.1016/j.cola.2020.100987
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
ALFONSO DE LA VEGA RUIZ
DIEGO GARCIA SAIZ
MARTA ELENA ZORRILLA PANTALEON
PABLO SANCHEZ BARREIRO
Volver