

# SUBJECT TEACHING GUIDE

# G605 - Renewable and Alternative Energies

# Degree in Energy Resources Engineering

## Academic year 2022-2023

| 1. IDENTIFYING DATA              |                                                                                                         |      |                    |                    |              |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------|------|--------------------|--------------------|--------------|--|--|--|--|
| Degree                           | Degree in Energy Resources Engineering                                                                  |      | Type and Year      | Compulsory. Year 4 |              |  |  |  |  |
| Faculty                          | School of Mines and Energy Engineering                                                                  |      |                    |                    |              |  |  |  |  |
| Discipline                       | Subject Area: Advanced Electrical Technology Module: Training in Energy Resources, Fuels and Explosives |      |                    |                    |              |  |  |  |  |
| Course unit title and code       | G605 - Renewable and Alternative Energies                                                               |      |                    |                    |              |  |  |  |  |
| Number of ECTS credits allocated | 6                                                                                                       | Term | Semester based (1) |                    |              |  |  |  |  |
| Web                              | https://ocw.unican.es/course/view.php?id=69                                                             |      |                    |                    |              |  |  |  |  |
| Language of instruction          | English                                                                                                 |      | Mode of            | delivery           | Face-to-face |  |  |  |  |

| Department       | DPTO. INGENIERIA ELECTRICA Y ENERGETICA                                             |  |
|------------------|-------------------------------------------------------------------------------------|--|
| Name of lecturer | PABLO BERNARDO CASTRO ALONSO                                                        |  |
|                  |                                                                                     |  |
| E-mail           | pablo.castro@unican.es                                                              |  |
| Office           | E.P. de Ingeniería de Minas y Energía. Planta: + 0. DESPACHO SUBDIRECCION 059 (059) |  |
| Other lecturers  |                                                                                     |  |

## 3.1 LEARNING OUTCOMES

- Ability to cope with the present situation of the energy system and its possible evolution.
- Deeper knowledge of the concept of energy and its applications on renewable sources.
- To obtain the necessary skills to carry out engineering projects that use renewable energy sources.



## 4. OBJECTIVES

To obtain a quantitative view of the use of different energy sources at national and international level.

To learn about the different sources of renewable and alternative energy used today and others that can be used in the near future.

To be familiar with national and international regulations governing the use of renewable energy.

To design facilities to obtain work and energy using renewable sources.

| 6. CO | 6. COURSE ORGANIZATION                                                                                                                                                                |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | CONTENTS                                                                                                                                                                              |  |  |  |  |
| 1     | Introduction to renewable energies.                                                                                                                                                   |  |  |  |  |
| 2     | Wind Energy: 1.1. Wind as a power generator. 1.2. Wind turbines: technical aspects. 1.3. Wind farms. 1.4. Legal aspects of wind energy.                                               |  |  |  |  |
| 3     | Solar Energy: 2.1. Solar radiation. 2.2. Solar thermal collectors. 2.3. Solar thermal utilization. 2.4. Solar thermal power plants. 2.5 Solar panels. 2.6. Photovoltaic applications. |  |  |  |  |
| 4     | Ocean Energy: 3.1. Tidal power. 3.2. Wave power. 3.3. Ocean thermal energy.                                                                                                           |  |  |  |  |
| 5     | Hydropower: 4.1. Hydropower facilities. 4.2. Hydropower resources management. 4.3. Types of turbines. 4.4. Study of suitable sites by topographic, hidrologic and economical aspects. |  |  |  |  |
| 6     | Geothermal Energy: 5.1. Geothermal resources. 5.2. Geothermal exploration methods. 5.3. Geothermal energy application. 5.4. District heating design.                                  |  |  |  |  |
| 7     | Biomass and Biofuels: 6.1. General aspects. 6.2. Types of biomass. 6.3. Biofuels: Types and production. 6.4. Urban Solid Waste.                                                       |  |  |  |  |
| 8     | Energy of hydrogen: 7.1. General aspects. 7.2. Hydrogen production. 7.3. Storage and distribution. 7.4. Applications.                                                                 |  |  |  |  |



| 7. ASSESSMENT METHODS AND CRITERIA |              |             |           |        |  |  |  |
|------------------------------------|--------------|-------------|-----------|--------|--|--|--|
| Description                        | Туре         | Final Eval. | Reassessn | %      |  |  |  |
| Laboratory report                  | Work         | No          | No        | 20,00  |  |  |  |
| Classwork                          | Work         | No          | No        | 20,00  |  |  |  |
| Mid-term exam                      | Written exam | Yes         | Yes       | 30,00  |  |  |  |
| Mid-term exam                      | Written exam | Yes         | Yes       | 30,00  |  |  |  |
| TOTAL                              |              |             |           | 100.00 |  |  |  |

### Observations

To pass the subject through continuous assessment is necessary to achieve simultaneously:

- -To submit the laboratory report.
- -To attend to 80% of the class activities.
- -To obtain more than 30% of the maximum score in the mid-term exams.
- -To obtain a final average score of 50% or more of the maximum score.

#### Observations for part-time students

Part-time students must take an exam of all the contents of the subject in the February or September call.

#### 8. BIBLIOGRAPHY AND TEACHING MATERIALS

#### **BASIC**

Twidell, John; Weir, Tony. Renewable Energy Resources. (2006). Taylor & Francis.

Tushar K. Ghosh; Mark A. Prelas. Energy Resources and Systems. Volume 2: Renewable Resources. (2011). Springer.

Paul Breeze; Aldo Vieira et all. Renewable Energy Focus Handbook. (2009). Elsevier.

Martin Kaltschmitt; Wolfgang Streicher; Andreas Wiese. Editors. Renewable Energy, Technology, Economics and Environment. (2007). Springer.

M. Kanoglu; Y. Cengel: J. Cimbala. Fundamentals and applications of renewable energy. Mc Graw Hill (2020)