Search

Searching. Please wait…

Detalle_Publicacion

Spatial control of heat flow at the nanoscale using Janus particles

Abstract: Janus nanoparticles (JNPs) feature heterogeneous compositions, bringing opportunities in technological and medical applications. We introduce a theoretical approach based on nonequilibrium molecular dynamics simulations and heat transfer continuum theory to investigate the temperature fields generated around heated spherical JNPs covering a wide range of particle sizes, from a few nm to 100 nm. We assess the performance of these nanoparticles to generate anisotropic heating at the nanoscale. We demonstrate that the contrasting interfacial thermal conductances of the fluid-material interfaces arising from the heterogeneous composition of the JNPs can be exploited to control the thermal fields around the nanoparticle, leading to a temperature difference between both sides of the nanoparticle (temperature contrast) that is significant for particles comprising regions with disparate hydrophilicity. We illustrate this idea using coarse-grained and atomistic models of gold nanoparticles with hydrophobic and hydrophilic coatings, in water. Furthermore, we introduce a continuum model to predict the temperature contrast as a function of the interfacial thermal conductance and nanoparticle size. We further show that, unlike homogeneous nanoparticles, the interfacial fluid temperature depends on the interfacial thermal conductance of Janus nanoparticles.

 Fuente: ACS Nano, 2022, 16 (1), 694-709

Publisher: American Chemical Society

 Publication date: 01/01/2022

No. of pages: 16

Publication type: Article

 DOI: 10.1021/acsnano.1c08220

ISSN: 1936-0851,1936-086X

 Spanish project: PGC2018-096649-B-I00

Publication Url: https://doi.org/10.1021/acsnano.1c08220

Authorship

OLARTE PLATA, JUAN D.

GABRIEL, JORDAN

BRESME, FERNANDO