Search

Searching. Please wait…

Transcription factor-based biosensors enlightened by the analyte

Abstract: Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.

 Fuente: Front Microbiol, 2015, 6, 648

 Publisher: Frontiers Research Foundation

 Publication date: 01/07/2015

 No. of pages: 21

 Publication type: Article

 DOI: 10.3389/fmicb.2015.00648

 ISSN: 1664-302X

 Spanish project: BIO2010-14809 ; BFU2011-26608

 European project: info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/EVOTAR/