Search

Searching. Please wait…

First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure

Abstract: We develop a simple model to compute the energy-dependent decay factors of metal-induced gap states in metal/insulator interfaces considering the collective behavior of all the bulk complex bands in the gap of the insulator. The agreement between the penetration length obtained from the model (considering only bulk properties) and full first-principles simulations of the interface (including explicitly the interfaces) is good. The influence of the electrodes and the polarization of the insulator are analyzed. The method simplifies the process of screening materials to be used in Schootky barriers or in the design of giant tunneling electroresistance and magnetoresistance devices.

 Fuente: MRS Communications 3, 191-197 (2013)

 Publisher: Materials Research Society

 Year of publication: 2013

 No. of pages: 6

 Publication type: Article

 DOI: 10.1557/mrc.2013.43

 ISSN: 2159-6867

 Spanish project: FIS2009-12721-C04-02

 Publication Url: https://doi.org/10.1557/mrc.2013.43