Search

Searching. Please wait…

Detalle_Publicacion

Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering

Abstract: An escalating challenge in condensed-matter research is the characterization of emergent order-parameter nanostructures such as ferroelectric and ferromagnetic skyrmions. Their small length scales coupled with complex, three-dimensional polarization or spin structures makes them demanding to trace out fully. Resonant elastic x-ray scattering (REXS) has emerged as a technique to study chirality in spin textures such as skyrmions and domain walls. It has, however, been used to a considerably lesser extent to study analogous features in ferroelectrics. Here, we present a framework for modeling REXS from an arbitrary arrangement of charge quadrupole moments, which can be applied to nanostructures in materials such as ferroelectrics. With this, we demonstrate how extended reciprocal space scans using REXS with circularly polarized x rays can probe the three-dimensional structure and chirality of polar skyrmions. Measurements, bolstered by quantitative scattering calculations, show that polar skyrmions of mixed chirality coexist, and that REXS allows valuation of relative fractions of right- and left-handed skyrmions. Our quantitative analysis of the structure and chirality of polar skyrmions highlights the capability of REXS for establishing complex topological structures toward future application exploits.

Other publications of the same journal or congress with authors from the University of Cantabria

 Authorship: McCarter M.R., Kim K.T., Stoica V.A., Das S., Klewe C., Donoway E.P., Burn D.M., Shafer P., Rodolakis F., Gonçalves M.A.P., Gómez-Ortiz F., Íñiguez J., García-Fernández P., Junquera J., Lovesey S.W., Van Der Laan G., Park S.Y., Freeland J.W., Martin L.W., Lee D.R., Ramesh R.,

 Fuente: Physical Review Letters, 2022, 129(24), 247601

Publisher: American Physical Society

 Publication date: 05/12/2022

No. of pages: 7

Publication type: Article

 DOI: 10.1103/PhysRevLett.129.247601

ISSN: 0031-9007,1079-7114

 Spanish project: PGC2018-096955-B-C41

Publication Url: https://doi.org/10.1103/PhysRevLett.129.247601

Authorship

MCCARTER, MARGARET R

KIM, KOOK TAE

STOICA, VLADIMIR A

DAS, SUJIT

KLEWE, CHRISTOPH

DONOWAY, ELIZABETH P

BURN, DAVID M.

SHAFER, PADRAIC

RODOLAKIS, FANNY

GONÇALVES, MAURO A. P.

FERNANDO GOMEZ ORTIZ

ÍÑIGUEZ, JORGE

LOVESEY, STEPHEN W.

VAN DER LAAN, GERRIT

PARK, SE YOUNG

FREELAND, JOHN W.

MARTIN, LANE W.

LEE, DONG RYEOL