Searching. Please wait…
1443
37
174
31245
4601
2680
362
410
Abstract: An operator T acting on a separable F-space X is called hypercyclic if there exists f ? X such that the orbit {T nf} is dense in X. Here we determine when an operator that ?commutes with the operator of differentiation on the space of entire functions is hypercyclic, extending results by G. Godefroy and J. H. Shapiro [16] and R. M. Aron and D. Markose [1].
Fuente: Journal of Functional Analysis, 2022, 282(8), 109391
Publisher: Elsevier
Publication date: 01/04/2022
No. of pages: 23
Publication type: Article
DOI: 10.1016/j.jfa.2022.109391
ISSN: 0022-1236,1096-0783
Spanish project: MTM2016-76958
Publication Url: https://doi.org/10.1016/j.jfa.2022.109391
SCOPUS
Citations
Google Scholar
Metrics
UCrea Repository Read publication
BENSAID, IKRAM FATIMA ZOHRA
MANUEL GONZALEZ ORTIZ
LEÓN-SAAVEDRA, FERNANDO
ROMERO DE LA ROSA, MARÍA PILAR
Back