Estamos realizando la búsqueda. Por favor, espere...
1600
37
173
25367
4167
2494
330
Abstract: We show that if two lattice $ 3$-polytopes $ P$ and $ P'$ have the same Ehrhart function, then they are $ \operatorname {GL}_d(\mathbb{Z}) $-equidecomposable, that is, they can be partitioned into relatively open simplices $ U_1,\dots , U_k$ and $ U'_1,\dots ,U'_k$ such that $ U_i$ and $ U'_i$ are unimodularly equivalent for each $ i$.
Fuente: Proc. Amer. Math. Soc. 147 (2019), 5373-5383
Editorial: American Mathematical Society
Año de publicación: 2019
Tipo de publicación: Artículo de Revista
ISSN: 0002-9939,1088-6826
Url de la publicación: https://doi.org/10.1090/proc/14626
ERBE, JAKOB
HAASE, CHRISTIAN
FRANCISCO SANTOS LEAL
Volver