Buscar

Estamos realizando la búsqueda. Por favor, espere...

 Detalle_Publicacion

Ehrhart-equivalent $ \boldsymbol3$-polytopes are equidecomposable

Abstract: We show that if two lattice $ 3$-polytopes $ P$ and $ P'$ have the same Ehrhart function, then they are $ \operatorname {GL}_d(\mathbb{Z}) $-equidecomposable, that is, they can be partitioned into relatively open simplices $ U_1,\dots , U_k$ and $ U'_1,\dots ,U'_k$ such that $ U_i$ and $ U'_i$ are unimodularly equivalent for each $ i$.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Fuente: Proc. Amer. Math. Soc. 147 (2019), 5373-5383

Editorial: American Mathematical Society

 Año de publicación: 2019

Tipo de publicación: Artículo de Revista

ISSN: 0002-9939,1088-6826

Url de la publicación: https://doi.org/10.1090/proc/14626

Autores/as

ERBE, JAKOB

HAASE, CHRISTIAN