Estamos realizando la búsqueda. Por favor, espere...
1454
37
174
32321
4695
2695
363
420
Abstract: Given its fundamental role in development and cancer, the Wnt-ß-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively active mutants of ß-catenin. This inhibitory mechanism was disrupted by the expression of RNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of the Wnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate that RNF43 inhibits the Wnt pathway downstream of oncogenic mutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathway.
Fuente: Sci Signal. 2015 Sep 8;8(393):ra90
Editorial: American Association for the Advancement of Science
Año de publicación: 2015
Nº de páginas: 12
Tipo de publicación: Artículo de Revista
DOI: 10.1126/scisignal.aac6757
ISSN: 1945-0877,1937-9145
Google Scholar
Citas
Leer publicación
LOREGGER, A
GRANDL, M
MEJÍAS LUQUE, R
ALGAUER, M
DEGENHART, K
HASELMANN, V
OIKONOMOU, CH
HATZIS, P
JANSSEN, KP
NITSCHE, U
GRADL, D
BROEK, OLAF VAN DEN
DESTREE, O
ULM, K
NEUMAIER, M
KALALI, B
JUNG, A
IGNACIO VARELA EGOCHEAGA
SCHMID, RM
RAD, R
BUSCH, D
GERHARD, M
Volver