Buscar

Estamos realizando la búsqueda. Por favor, espere...

Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions

Abstract: Motivated by previous work on the simplification of parametrizations of curves, in this paper we generalize the well-known notion of analytic polynomial (a bivariate polynomial P(x, y), with complex coefficients, which arises by substituting z ? x + iy on a univariate polynomial p(z)?C[z], i.e. p(z) ? p(x + iy) = P(x, y)) to other finite field extensions, beyond the classical case of R?C. In this general setting we obtain different properties on the factorization, gcd's and resultants of analytic polynomials, which seem to be new even in the context of Complex Analysis. Moreover, we extend the well-known Cauchy-Riemann conditions (for harmonic conjugates) to this algebraic framework, proving that the new conditions also characterize the components of generalized analytic polynomials. © 2013 IMACS.

 Fuente: Mathematics and Computers in Simulation, 104, 2014, 43?57

 Editorial: Elsevier

 Año de publicación: 2014

 Nº de páginas: 15

 Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.matcom.2013.03.013

 ISSN: 0378-4754,1872-7166

 Proyecto español: MTM2011-25816-C02-02

 Url de la publicación: http://www.sciencedirect.com/science/article/pii/S0378475413001407

Autoría

TOMAS JESUS RECIO MUÑIZ

SENDRA, J.R.