Estamos realizando la búsqueda. Por favor, espere...
1443
37
172
30625
4483
2658
361
406
Abstract: In a dynamical system the first Lyapunov vector (LV) is associated with the largest Lyapunov exponent and indicates?at any point on the attractor?the direction of maximal growth in tangent space. The LV corresponding to the second largest Lyapunov exponent generally points in a different direction, but tangencies between both vectors can in principle occur. Here we find that the probability density function (PDF) of the angle ? spanned by the first and second LVs should be expected to be approximately symmetric around ?/4 and to peak at 0 and ?/2. Moreover, for small angles we uncover a scaling law for the PDF Q of ?l = ln?? with the system size L: Q(?l) = L?1/2f(?lL?1/2). We give a theoretical argument that justifies this scaling form and also explains why it should be universal (irrespective of the system details) for spatio-temporal chaos in one spatial dimension.
Autoría: Pazó D., López J.M., Rodríguez M.A.,
Fuente: J. Phys. A: Math. Theor. 46 254014
Editorial: IOP Publishing
Año de publicación: 2013
Nº de páginas: 12
Tipo de publicación: Artículo de Revista
DOI: 10.1088/1751-8113/46/25/254014
ISSN: 1751-8113,1751-8121
Proyecto español: FIS2009-12964-C05-05
Url de la publicación: https://doi.org/10.1088/1751-8113/46/25/254014
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
DIEGO SANTIAGO PAZO BUENO
JUAN MANUEL LOPEZ MARTIN
MIGUEL ANGEL RODRIGUEZ DIAZ
Volver