Buscar

Estamos realizando la búsqueda. Por favor, espere...

Global existence in the Lipschitz class for the N-Peskin problem

Abstract: In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwise.

 Fuente: Indiana University Mathematics Journal, 2023, 72(2), 553-602

 Editorial: Indiana University

 Año de publicación: 2023

 Nº de páginas: 50

 Tipo de publicación: Artículo de Revista

 DOI: 10.1512/iumj.2023.72.9320

 ISSN: 0022-2518

 Proyecto español: PID2019-109348GA-I00

 Url de la publicación: https://dx.doi.org/10.1512/iumj.2023.72.9320

Autoría

GANCEDO, FRANCISCO

SCROBOGNA, STEFANO