Estamos realizando la búsqueda. Por favor, espere...
1437
37
174
30996
4545
2676
361
406
Abstract: In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwise.
Fuente: Indiana University Mathematics Journal, 2023, 72(2), 553-602
Editorial: Indiana University
Año de publicación: 2023
Nº de páginas: 50
Tipo de publicación: Artículo de Revista
DOI: 10.1512/iumj.2023.72.9320
ISSN: 0022-2518
Proyecto español: PID2019-109348GA-I00
Url de la publicación: https://dx.doi.org/10.1512/iumj.2023.72.9320
Google Scholar
Citas
Leer publicación
GANCEDO, FRANCISCO
RAFAEL GRANERO BELINCHON
SCROBOGNA, STEFANO
Volver