Buscar

Estamos realizando la búsqueda. Por favor, espere...

Detalle_Publicacion

Anomalous motion of charged domain walls and associated negative capacitance in copper-chlorine boracite

Abstract: During switching, the microstructure of a ferroelectric normally adapts to align internal dipoles with external electric fields. Favorably oriented dipolar regions (domains) grow at the expense of those in unfavorable orientations and this is manifested in a predictable field-induced motion of the walls that separate one domain from the next. Here, the discovery that specific charged 90°domain walls in copper-chlorine boracite move in the opposite direction to that expected, increasing the size of the domain in which polarization is anti-aligned with the applied field, is reported. Polarization-field (P-E) hysteresis loops, inferred from optical imaging, show negative gradients and non-transient negative capacitance, throughout the P-E cycle. Switching currents (generated by the relative motion between domain walls and sensing electrodes) confirm this, insofar as their signs are opposite to those expected conventionally. For any given bias, the integrated switching charge due to this anomalous wall motion is directly proportional to time, indicating that the magnitude of the negative capacitance component should be inversely related to frequency. This passes Jonscher's test for the misinterpretation of positive inductance and gives confidence that field-induced motion of these specific charged domain walls generates a measurable negative capacitance contribution to the overall dielectric response.

 Fuente: Advanced Materials, 2021, 33(16), 2008068

Editorial: Wiley-Blackwell

 Fecha de publicación: 01/04/2021

Nº de páginas: 10

Tipo de publicación: Artículo de Revista

 DOI: 10.1002/adma.202008068

ISSN: 1521-4095,0935-9648

Url de la publicación: https://doi.org/10.1002/adma.202008068

Autoría

GUY, JOSEPH G. M.

COCHARD, CHARLOTTE

SOERGEL, ELISABETH

WHATMORE, ROGER W.

CONROY, MICHELE

MOORE, KALANI

COURTNEY, EILEEN

HARVEY, ALAN

BANGERT, URSEL

KUMAR, AMIT

MCQUAID, RAYMOND G. P.

GREGG. J. MARTY