Abstract: The objective of this review was to analyze the pathophysiological role of endoneurial inflammatory edema in initial stages of classic Guillain-Barré syndrome (GBS), arbitrarily divided into very early GBS (? 4 days after symptom onset) and early GBS (? 10 days). Classic GBS, with variable degree of flaccid and areflexic tetraparesis, encompasses demyelinating and axonal forms. Initial autopsy studies in early GBS have demonstrated that endoneurial inflammatory edema of proximal nerve trunks, particularly spinal nerves, is the outstanding lesion. Variable permeability of the blood-nerve barrier dictates such lesion topography. In proximal nerve trunks possessing epi-perineurium, edema may increase the endoneurial fluid pressure causing ischemic changes. Critical analysis the first pathological description of the axonal form GBS shows a combination of axonal degeneration and demyelination in spinal roots, and pure Wallerian-like degeneration in peripheral nerve trunks. This case might be reclassified as demyelinating GBS with secondary axonal degeneration. Both in acute motor axonal neuropathy and acute motor-sensory axonal neuropathy, Wallerian-like degeneration of motor fibers predominates in the distal part of ventral spinal roots abutting the dura mater, another feature re-emphasizing the pathogenic relevance of this area. Electrophysiological and imaging studies also point to a predominant alteration at the spinal nerve level, which is a hotspot in any early GBS subtype. Serum biomarkers of axonal damage, including neurofilament light chain and peripherin, are increased in the great majority of patients with any early GBS subtype; endoneurial ischemia of proximal nerve trunks could contribute to such axonal damage. It is concluded that inflammatory edema of proximal nerve trunks is an essential pathogenic event in early GBS, which has a tangible impact for accurate approach to the disease.