Estamos realizando la búsqueda. Por favor, espere...
1441
37
174
31200
4596
2680
361
406
Abstract: We reveal new classes of solutions to hydrodynamic Euler alignment systems governing collective behavior of flocks. The solutions describe unidirectional parallel motion of agents and are globally well-posed in multidimensional settings subject to a threshold condition similar to the one-dimensional case. We develop the flocking and stability theory of these solutions and show long-time convergence to a traveling wave with rapidly aligned velocity field. In the context of multiscale models introduced by Shvydkoy and Tadmor (Multiscale Model. Simul. 19:2 (2021), 1115-1141) our solutions can be superimposed into Mikado formations - clusters of unidirectional flocks pointing in various directions. Such formations exhibit multiscale alignment phenomena and resemble realistic behavior of interacting large flocks.
Fuente: Analysis and PDE, 2022, 15(1), 175-196
Editorial: Mathematical Sciences Publishers
Año de publicación: 2022
Nº de páginas: 22
Tipo de publicación: Artículo de Revista
DOI: 10.2140/apde.2022.15.175
ISSN: 2157-5045,1948-206X
Url de la publicación: https://doi.org/10.2140/apde.2022.15.175
Google Scholar
Citas
Leer publicación
DANIEL LEAR CLAVERAS
SHVYDKOY, ROMAN
Volver