Estamos realizando la búsqueda. Por favor, espere...
1441
37
174
31200
4596
2680
361
406
Abstract: Motivated by an equation arising in magnetohydrodynamics, we address the well-posedness theroy for the non-diffusive magneto-geostrophic equation. Namely, an active scalar equation in which the divergence-free drift velocity is one derivative more singular than the active scalar. In Friedlander and Vicol (Nonlinearity 24(11)::3019-3042, 2011), the authors prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces, but locally well posed in spaces of analytic functions. Here, we give an example of a steady state that is nonlinearly stable for periodic perturbations with initial data localized in frequency straight lines crossing the origin. For such well-prepared data, the local existence and uniqueness of solutions can be obtained in Sobolev spaces and the global existence holds under a size condition over the H5/2+(T3) norm of the perturbation.
Fuente: Journal of Mathematical Fluid Mechanics, 2021, 23(2), 31
Editorial: Springer International Publishing AG
Fecha de publicación: 01/03/2021
Nº de páginas: 19
Tipo de publicación: Artículo de Revista
DOI: 10.1007/s00021-021-00566-2
ISSN: 1422-6928,1422-6952
Url de la publicación: https://doi.org/10.1007/s00021-021-00566-2
Google Scholar
Citas
Leer publicación
DANIEL LEAR CLAVERAS
Volver