Estamos realizando la búsqueda. Por favor, espere...
1445
37
174
31303
4607
2680
362
410
Abstract: In hydrology, extreme value analysis is normally applied at stationary yearly maxima. However, climate variability can bias the estimation of extremes by partially invalidating the stationary assumption. Extreme value analysis for sub-yearly data may depart from stationarity (since maxima from one month may not be exchangeable with maxima from another) in terms of requiring to include it in the analysis. Here, we analyse the non-stationary structure of extreme monthly rainfall in Spain using two approaches: a parametric approach and an approach based on autoregressive time series models. Our analysis considers seasonality, climate variability and long-term trends for both approaches, and it compares both including their goodness of fit and complexity. The approach uses maximum likelihood estimation and Bayesian techniques. Our results show that autoregressive models outperform parametric models, providing a more accurate representation of extreme events when extrapolating outside of the period of fit.
Congreso: International Association of Hydrological Sciences: STAHY (11ª : 2021 : En Linea)
Editorial: Taylor and Francis Ltd.
Año de publicación: 2023
Nº de páginas: 17
Tipo de publicación: Comunicación a Congreso
DOI: 10.1080/02626667.2023.2193294
ISSN: 0262-6667,2150-3435
Proyecto español: RTI2018-096449-B-I00
Url de la publicación: https://www.tandfonline.com/doi/full/10.1080/02626667.2023.2193294
Repositorio UCrea Leer publicación
DIEGO ARMANDO URREA MENDEZ
MANUEL DEL JESUS PEÑIL
Volver