Buscar

Estamos realizando la búsqueda. Por favor, espere...

Derivation and well-posedness for asymptotic models of cold plasmas

Abstract: In this paper we derive three new asymptotic models for a hyperbolic-hyperbolic-elliptic system of PDEs describing the motion of a collision-free plasma in a magnetic field. The first of these models takes the form of a non-linear and non-local Boussinesq system (for the ionic density and velocity) while the second is a non-local wave equation (for the ionic density). Moreover, we derive a unidirectional asymptotic model of the latter which is closely related to the well-known Fornberg-Whitham equation. We also provide the well-posedness of these asymptotic models in Sobolev spaces. To conclude, we demonstrate the existence of a class of initial data which exhibit wave breaking for the unidirectional model.

 Fuente: Nonlinear Analysis: Theory, Methods and Applications, 2024, 244, 113539

 Editorial: Elsevier

 Fecha de publicación: 01/07/2024

 Nº de páginas: 18

 Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.na.2024.113539

 ISSN: 0362-546X,1873-5215

 Proyecto español: PID2019-109348GA-I00

 Url de la publicación: https://doi.org/10.1016/j.na.2024.113539

Autoría

ALONSO-ORÁN, DIEGO

DURÁN, ANGEL