Estamos realizando la búsqueda. Por favor, espere...


Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation

Abstract: Optimal sparse control problems are considered for the FitzHugh–Nagumo system including the so-called Schlögl model. The nondifferentiable objective functional of tracking type includes a quadratic Tikhonov regularization term and the L1-norm of the control that accounts for the sparsity. Though the objective functional is not differentiable, a theory of second order sufficient optimality conditions is established for Tikhonov regularization parameter ? > 0 and also for the case ? = 0. In this context, also local minima are discussed that are strong in the sense of the calculus of variations. The second order conditions are used as the main assumption for proving the stability of locally optimal solutions with respect to ? ? 0 and with respect to perturbations of the desired state functions. The theory is confirmed by numerical examples that are resolved with high precision to confirm that the optimal solution obeys the system of necessary optimality conditions.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Autoría: Casas E., Ryll C., Tröltzsch F.,

 Fuente: SIAM Journal on Control and Optimization, 2015, 53(4), 2168–2202

Editorial: Society for Industrial and Applied Mathematics

 Año de publicación: 2015

Nº de páginas: 35

Tipo de publicación: Artículo de Revista

 DOI: 10.1137/140978855

ISSN: 0363-0129,1095-7138

 Proyecto español: MTM2011-22711