Buscar

Estamos realizando la búsqueda. Por favor, espere...

The fisher-kpp equation with nonlinear fractional diffusion

Abstract: We study the propagation properties of nonnegative and bounded solutions of the class of reaction-diffusion equations with nonlinear fractional diffusion: ut +(??)s(um) = f(u). For all 0 < s < 1 and m > mc = (N ? 2s)+/N, we consider the solution of the initial-value problem with initial data having fast decay at infinity and prove that its level sets propagate exponentially fast in time, in contrast to the traveling wave behavior of the standard KPP case, which corresponds to putting s = 1, m = 1, and f(u) = u(1 ? u). The proof of this fact uses as an essential ingredient the recently established decay properties of the self-similar solutions of the purely diffusive equation, ut + (??)sum = 0.

 Fuente: SIAM journal on mathematical analysis, Vol. 46, No. 5, pp. 3241?3276

 Editorial: Society for Industrial and Applied Mathematics

 Año de publicación: 2014

 Nº de páginas: 35

 Tipo de publicación: Artículo de Revista

 DOI: 10.1137/130918289

 ISSN: 0036-1410,1095-7154

 Url de la publicación: https://doi.org/10.1137/130918289

Autoría

VÁZQUEZ, JUAN LUIS