Buscar

Estamos realizando la búsqueda. Por favor, espere...

Predicting Climate-Driven Coastlines With a Simple and Efficient Multiscale Model

Abstract: Ocean-basin-scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change?foredune erosion model (A COupled CrOss-shOre, loNg-shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross-shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross-shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004?2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub-cell (NBSC) of the Columbia River Littoral Cell (Washington, USA).We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979?2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross-shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices.

 Autoría: Antolínez J.A.A., Méndez F.J., Anderson D., Ruggiero P., Kaminsky G.M.,

 Fuente: Journal of Geophysical Research: Earth Surface, Volume124, Issue 6 June 2019 Pages 1596-1624

 Editorial: John Wiley & Sons

 Fecha de publicación: 01/06/2019

 Nº de páginas: 29

 Tipo de publicación: Artículo de Revista

 DOI: 10.1029/2018JF004790

 ISSN: 2169-9011,2169-9003

 Proyecto español: BIA2014-59643-R

 Url de la publicación: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JF004790

Autoría

JOSE ANTONIO ALVAREZ ANTOLINEZ

ANDERSON, DYLAN

RUGGIERO, PETER

KAMINSKY, GEORGE M. KAMINSKY