Buscar

Estamos realizando la búsqueda. Por favor, espere...

On a nonlocal differential equation describing roots of polynomials under differentiation

Abstract: In this work we study the nonlocal transport equation derived recently by Steinerberger [Proc. Amer. Math. Soc., 147(11):4733{4744, 2019]. When this equation is considered on the real line, it describes how the distribution of roots of a polynomial behaves under iterated di erentiation of the function. This equation can also be seen as a nonlocal fast di usion equation. In particular, we study the well-posedness of the equation, establish some qualitative properties of the solution and give conditions ensuring the global existence of both weak and strong solutions. Finally, we present a link between the equation obtained by Steinerberger and a one-dimensional model of the surface quasi-geostrophic equation used by Chae et al. [Adv. Math., 194(1):203{223, 2005].

 Fuente: Communications in Mathematical Sciences, 2020, 18(6), 1643-1660

 Editorial: International Press

 Año de publicación: 2020

 Nº de páginas: 18

 Tipo de publicación: Artículo de Revista

 DOI: 10.4310/CMS.2020.v18.n6.a6

 ISSN: 1539-6746,1945-0796

 Proyecto español: MTM2017-89976-P

 Url de la publicación: https://dx.doi.org/10.4310/CMS.2020.v18.n6.a6