Estamos realizando la búsqueda. Por favor, espere...
1437
37
174
30996
4545
2676
361
406
Abstract: In this work we study the nonlocal transport equation derived recently by Steinerberger [Proc. Amer. Math. Soc., 147(11):4733{4744, 2019]. When this equation is considered on the real line, it describes how the distribution of roots of a polynomial behaves under iterated dierentiation of the function. This equation can also be seen as a nonlocal fast diusion equation. In particular, we study the well-posedness of the equation, establish some qualitative properties of the solution and give conditions ensuring the global existence of both weak and strong solutions. Finally, we present a link between the equation obtained by Steinerberger and a one-dimensional model of the surface quasi-geostrophic equation used by Chae et al. [Adv. Math., 194(1):203{223, 2005].
Fuente: Communications in Mathematical Sciences, 2020, 18(6), 1643-1660
Editorial: International Press
Año de publicación: 2020
Nº de páginas: 18
Tipo de publicación: Artículo de Revista
DOI: 10.4310/CMS.2020.v18.n6.a6
ISSN: 1539-6746,1945-0796
Proyecto español: MTM2017-89976-P
Url de la publicación: https://dx.doi.org/10.4310/CMS.2020.v18.n6.a6
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
RAFAEL GRANERO BELINCHON
Volver